

Cervical Cancer Screening

S.A. NADJI, PHD

ASSOCIATE PROFESSOR OF VIROLOGY HEAD, VIROLOGY RESEARCH CENTER, NRITLD, SBMU

Ranking of the 7 most common HPV types

Rank	Cervix	Vulva	Vagina	Penis	Anus
1	HPV 16	HPV 16	HPV 16	HPV 16	HPV 16
2	HPV 18	HPV 33	HPV 31	HPV 6	HPV 18
3	HPV 45	HPV 18	HPV 18	HPV 33	HPV 33
4	HPV 33	HPV 45	HPV 33	HPV 45,35	HPV 31
5	HPV 31	HPV 52	HPV 45,58	HPV 59	HPV 58,6
6	HPV 52	HPV 56	HPV 52	HPV 18,52,11	HPV 35
7	HPV 58	HPV 31,58,74	HPV 51	HPV 58	HPV 11
					,

▶ Type distribution for nearly 30'000 HPV related cancers from 38 countries participants in ICO surveys 2005 - 2014

Burden of HPV related Cancers

	CERVIX	VULVA	VAGINA	PENIS	ANUS	Estimation of HPV attributable fraction
Incidence (1,2)	14.0%	0- 4.6%	0.5- 1.7%	14.0%	1.0%	HPV-related cancer site Region AF (%) Cervix uteri PCR World 100
Annual number of cancers ⁽³⁾	530,000	27,000	13,000	22,000	27,000	AnusPCRWorldPenisPCRWorld51VaginaPCRWorld78VulvaPCRAge 15–54 years48Age 55–64 years28
Cancers attributable to HPV ⁽³⁾	530,000	12,000	9,000	11,000	24,000	Oropharynx PCR + E6/E7 mRNA North America 51 (including East Europe 50 South Europe 24
HPV prevalence ⁽³⁾	100%	43%	70%	50%	88%	tonsils and base of Tongue)
Worldwie	de populatio	n attributabl	e fraction 4.8	% (3)		Australia 41 Elsewhere 13
						Oral cavity/Larynx E6/E7 mRNA World 4

1) Age-standardized incidence rate per 100,000 women per year 2) de Martel C et al. Lancet Oncol 2012;13(6):607-15 3) Forman et al. Vaccine. 2012;30S F12-F23

HPV PREVALENCE IN IRANIAN FEMALES

HPV screening, 2011

- 5353 ThinPreps, 11 provinces
- 320 HPV+ (6%)
 - 99 HR-HPV (31%) [type16/18]
 - 36 LR-HPV (11.3%) [type 6/11]

HPV screening in addicted females,2009

- 118 vaginal swabs, TEHRAN
- 59 HPV+ (50%)
- 11 HR-HPV (19%) [type16/18]

Int J Gynecol Obstet, 2009

STI screening in Vulnerable women,2015

- With collaboration of 15 Medical Science Universities
- 1337 vaginal swabs, 13 provinces
- 559 Human Papillomavirus: 41.8% (95%CI: 39.2, 44.5)
- 144 HR-HPV (25.8%) [type16/18]
- other STI prevalence

Syphilis 0.4% (95%CI: 0.2, 1.0); Gonorrhea: 1.3% (95%CI: 0.8, 2.1); Chlamydia: 6.0% (95% CI: 4.8, 7.4); Trichomoniasis: 11.9% (95% CI: 8.5, 16.5);

Number of Isolated Genotypes

1	G 89	7	
2	G 87	1	
3	G 84	5	
4	G 83	1	
5	G 81	1	
6	G 73	2	
7	G 70	1	
8	G 69	1	
9	G 68	12	
10	G 67	3	
11	G 66	37	+
12	G 62	6	
13	G 61	1	
14	G 59	7	
15	G 58	5	
16	G 56	10	
17	G 54	4	

18	G 53	7	
19	G 52	4	
20	G 51	18	
21	G 45	8	
22	G 44	46	4
23	G 43	5	
24	G 42	14	
25	G 40	1	
26	G 39	6	
27	G 35	10	
28	G 33	3	
29	G 31	9	
30	G 26	1	
31	G 18	18	
32	G 16	83	
	G16 or G18	99	
33-34	G 6/11	36	

Objective of Screening

- Prevent morbidity and mortality from cervical cancer
- Prevent overzealous management of precursor lesions that most likely will regress or disappear and for which the risks of management outweigh the benefits

How good is Cytology in Cervical cancer Screening?

- Duke report (Nada et al., 2000): sensitivity= 51% & specificity= 98%
- Pooled analysis of European and Canadian Studies (Cuzick et al.,2006): sensitivity= 53% & specificity= 96%
- Cytology Screening programs have to compensate for the low sensitivity by acquiring 2-3 annual cytology tests

Other Issue to consider with Cytology

- Highly subjective test: substantial inter- and intra- laboratory variability and limited reproducibility, particularly for equivocal and low grade test results
- Unable to identify women at future risk of developing cervical cancer precursors
- Unclear how cytology will perform as HPV vaccine uptake rates increase

New ACS/ASCCP/ASCP Guidelines when to begin screening

Cervical cancer screening should begin at age 21

Women <21 should not be screened regardless of age of sexual onset

SASLOW D, SOLOMON D, LAWSON H, CA: A CANCER J FOR CLINICIANS, 2012, 62(3):147-72

"

2012 ACS/ASCCP/ASCP screening guidelines

Screening for age 21-29

- Cytology alone every 3 years
- HPV testing "should not be used to screen"
 - Not as a component of contesting
 - Not as a primary stand –alone screen

Screening for age 30-64

- Cytology + HPV testing (contesting) every 5 years is PREFERRED
- Cytology alone every 3 years
 is ACCEPTABLE

"

HPV Testing into Primary Screening

"

Cotesting vs. Primary stand -alone HPV testing

RCTs of HPV Testing in Screening

- POBASCAN study: the Netherlands (Mej\ijer et al., Int J Cancer 2004; Bulkmans et al., Lancet 2007)
- Indian Trial (Osmanabad) (Sankaranarayanan et al. NEJM 2009)
- ARTISTIC trial: UK (Kitchener et al. Lancet Oncol 2009)
- NTCC Italian Study (Ronco et al., Lancet Oncol, 2006; JNCI 2006)
- SWEDESCREEN: Swedish trial (Elfgren et al., AJOG 2005; Naucler et al., NEJM 2007; JNCI 2009)
- Finnish RCT (Kotaniemi et al., BJC 2005; Eur J Cancer 2008; IJC 2008; Leinonen et al., JNCI 2009)
- CCCaST study: Canada (Mayrand et al., IJC 2006; NEJM 2007)
- **BC RCT (HPV FOCAL): Canada (Ogilvie et al., Br J Cancer 2012)**
- Athena Trial: United States (Wright, et al., GynOnc 2015)

HPV Testing Finds More Women at High 5- year Risk of Cancer or Precancer

Katki et al, Lancet Oncology, 2011

Why is HPV DNA Testing an Attractive Option for Cervical Cancer Screening?

- More sensitive and reproducible than cytology
- More "upstream" in carcinogenic process, thus enabling a longer safety margin for screening intervals
- Assesses future risk (and not just the presence of current disease)

- Can be automated, centralized, and quality- checked for large specimen throughput
- May be more cost- effective than cytology if deployed for high volume testing, such as primary screening
- A more logic choice for screening women vaccinated against HPV infection.

Risk of ≥CIN3 After a Negative Screening Test 3 Years of Follow-up

Virology Research Center سر کز تحقیقات ویروس شناسی

HPV As an Initial Screening Test Proposed Primary Screening Algorithm

HPV with 16/18 genotyping and reflex cytology

From 3/12/2014 FDA panel Materials

HPV Primary Screening for Cervical Cancer

- Because of equivalent or superior effectiveness, primary hrHPV screening can be considered as best alternative to current cervical cancer screening methods.
- Based on limited data, triage of HPV+ women using a combination of genotyping for HPV16&18 and reflex cytology for women + for the 12 other HPV genotypes appears to be a reasonable approach to managing HPV + women.

What to do if HPV-? Interval of screening

- 3 yearly wth Cytology
- 5 yearly wth HPV
- Screening interval for HPV women is more political than scientific question.
 - Balancing health gain, resource, side effect, and convenience
 - From 3 to 10 years interval in different EU countries

	ars 5 y	/ears
cytology 0.00	7% 0.0	028%
HPV 0.00	5% 0.	007%
	7	
	<u>ک</u> ے	
مسمى	كمسم	7

Elfsfrom, 2014, bmj

• FAM19A4 family with sequence similarity 19 (chemokine (C-C motif)-like) memberA4

- Identified by methylation-specific digital karyotyping of HPV16 E6/E7 immortalized human keratinocytes
- mir124-2 encodes microRNA
 - Identified by candidate gene approach

Methylation Markers

in Cervical

Carcinogenesis

Methylation levels are associated with the severity of the CIN lesion

Methylation levels increase with duration of the pre-existing HPV infection of the CIN 2/3 disease and are extremely high in cancers Steenbergen, R.D., et al. (2014). Nature Rev. Cancer 14, 395-405; Wilting, S.M., et al. (2010). Mol. Cancer 9, 167.

Increased methylation levels in cervical scrapes proportional to severity of cervical disease

Similiar data for self samples

Increased methylation levels in cervical scrapes of women with CIN 2/3 with longer duration of pre-existing HPV infection

 Hypermethylation particularly associated with advanced disease; all advanced CIN 2/3 lesions (100%; 29/29; 95%CI: 88–100) scored methylation–positive for FAM19A4 and/or mir124-2, compared with 47% (9/19; 95%CI: 27–69) of early CIN 2/3 lesions

 FAM19A4/mir124-2 methylation analysis specifically detects "advanced" CIN lesions, which harbor a cancer-like methylation profile and have an expected high short-term risk of progression to cancer

Current Screening Dilemma in Iran

Cotesting or HPV primary testing?

- ▶ Is there additional benefit to contesting vs. 1° HPV testing alone?
- Which platform can be used in primary HPV Screening?
 - Can we integrate all the screening
 - Laboratory facilities & structures
 - Importing lab, technology or domestic production?
 - Test Validation; test specification
- How do we perform screening and management guidance?

The last but not the least ...

- the biggest gain in reducing cervical cancer incidence and mortality would be achieved by increasing screening rate among WOMEN RARELY OR NEVER SCREENED ...
- Clinician, hospitals, health plans, and public health officials should seek to identify and screen these women."